论文标题

椭圆形的分数laplacians

Fractional Laplacians on ellipsoids

论文作者

Abatangelo, Nicola, Jarohs, Sven, Saldaña, Alberto

论文摘要

我们展示了用于评估椭圆形支持某些功能的(可能是高阶)分数laplacian的明确公式。特别是,我们得出了扭转功能的明确表达,并提供了$ s $ harmonic函数的示例。作为一个应用程序,我们推断出弱椭圆形的弱最大原理在(1,\ sqrt {3} +3/2)$中以任何维度$ n \ geq 2 $中的$ s \ in(1,\ sqrt {3} +3/2)$失败。我们根据扭转函数时间构建了一个反例2度的多项式。使用点反转转换,可以得出的是,各种有界和无界的域不能满足保持阳性的属性,我们给出了一些示例。

We show explicit formulas for the evaluation of (possibly higher-order) fractional Laplacians of some functions supported on ellipsoids. In particular, we derive the explicit expression of the torsion function and give examples of $s$-harmonic functions. As an application, we infer that the weak maximum principle fails in eccentric ellipsoids for $s\in(1,\sqrt{3}+3/2)$ in any dimension $n\geq 2$. We build a counterexample in terms of the torsion function times a polynomial of degree 2. Using point inversion transformations, it follows that a variety of bounded and unbounded domains do not satisfy positivity preserving properties and we give some examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源