论文标题
以自我为中心数据的网络自相关模型
Network Autocorrelation Models with Egocentric Data
论文作者
论文摘要
数十年来,网络自相关模型已被广泛用于建模网络参与者属性的联合分布。这类模型可以估计个体特征的影响以及网络效应或社会影响对某些感兴趣的参与者属性的影响。但是,如果网络边界未知或难以定义,则在整个网络上收集数据通常是不可行的或不可能的。获得以自我为中心的网络数据克服了这些障碍,但是迄今为止,尚无清晰的方法来建模这种类型的数据,并且仍然可以以与完整网络数据的联合分布兼容的方式适当地捕获网络对Actor属性的影响。本文适应了网络自相关模型的类别以处理以自我为中心的数据。因此,提出的方法结合了网络引起的数据的复杂依赖性结构,而不是仅仅使用自我网络的临时度量来建模平均结构,并可以估算网络对感兴趣的参与者属性的影响。可以简洁地表示有关网络的大量未知信息,仅取决于以egentric网络数据中的变化数量而不是网络中的参与者总数。估计是在贝叶斯框架内完成的。进行了一项模拟研究以评估估计性能,并分析了以自我为中心的数据集,目的是确定网络对环境掌握的影响,这是心理健康的重要方面。
Network autocorrelation models have been widely used for decades to model the joint distribution of the attributes of a network's actors. This class of models can estimate both the effect of individual characteristics as well as the network effect, or social influence, on some actor attribute of interest. Collecting data on the entire network, however, is very often infeasible or impossible if the network boundary is unknown or difficult to define. Obtaining egocentric network data overcomes these obstacles, but as of yet there has been no clear way to model this type of data and still appropriately capture the network effect on the actor attributes in a way that is compatible with a joint distribution on the full network data. This paper adapts the class of network autocorrelation models to handle egocentric data. The proposed methods thus incorporate the complex dependence structure of the data induced by the network rather than simply using ad hoc measures of the egos' networks to model the mean structure, and can estimate the network effect on the actor attribute of interest. The vast quantities of unknown information about the network can be succinctly represented in such a way that only depends on the number of alters in the egocentric network data and not on the total number of actors in the network. Estimation is done within a Bayesian framework. A simulation study is performed to evaluate the estimation performance, and an egocentric data set is analyzed where the aim is to determine if there is a network effect on environmental mastery, an important aspect of psychological well-being.