论文标题
自举的牛顿重力中的多潮流星
Polytropic stars in bootstrapped Newtonian gravity
论文作者
论文摘要
我们在自举的牛顿图片中研究了用于状态的多变态方程的牛顿图片中的自我磨碎的恒星。我们认为恒星跨越了广泛的紧凑型值。物质密度和压力都是重力电位的来源。数值解决方案表明,高斯函数可以很好地近似密度。稍后,我们假设高斯密度曲线研究源的紧凑性,高斯密度曲线的宽度和多环反应指数之间的相互作用。我们还专门将自举的牛顿恒星的压力和密度曲线与相应的一般相对论溶液进行比较。我们还指出,没有发现buchdahl限制,这意味着压力原则上可以支撑一颗任意大的紧凑性。实际上,我们发现代表高于Buchdhal极限的多变态恒星的溶液。
We study self-gravitating stars in the bootstrapped Newtonian picture for polytropic equations of state. We consider stars that span a wide range of compactness values. Both matter density and pressure are sources of the gravitational potential. Numerical solutions show that the density profiles can be well approximated by Gaussian functions. Later we assume Gaussian density profiles to investigate the interplay between the compactness of the source, the width of the Gaussian density profile and the polytropic index. We also dedicate a section to comparing the pressure and density profiles of the bootstrapped Newtonian stars to the corresponding General Relativistic solutions. We also point out that no Buchdahl limit is found, which means that the pressure can in principle support a star of arbitrarily large compactness. In fact, we find solutions representing polytropic stars with compactness above the Buchdhal limit.