论文标题
在非平凡背景下的光子传播
Photon propagation in non-trivial backgrounds
论文作者
论文摘要
在不同种类的非平凡背景(包括热浴或背景磁场)或两者兼而有之,光子(或任何Spin-1-Boson的传播(或任何Spin-1玻色子)都具有感兴趣。我们对所有此类案件进行统一的处理,将问题视为矩阵特征值问题。所讨论的矩阵不是正常的矩阵,因此应注意将右征值与左侧特征向量区分开。极化向量显示为该矩阵的右特征向量,并且极化和公式被视为特征向量的完整性关系。我们展示了该方法如何成功应用于不同的非平凡背景。
Propagation of photons (or of any spin-1 boson) is of interest in different kinds of non-trivial background, including a thermal bath, or a background magnetic field, or both. We give a unified treatment of all such cases, casting the problem as a matrix eigenvalue problem. The matrix in question is not a normal matrix, and therefore care should be given to distinguish the right eigenvectors from the left eigenvectors. The polarization vectors are shown to be right eigenvectors of this matrix, and the polarization sum formula is seen as the completeness relation of the eigenvectors. We show how this method is successfully applied to different non-trivial backgrounds.