论文标题
石墨烯同位素超晶格的导热率
Thermal conductivity of graphene isotope superlattices
论文作者
论文摘要
石墨烯具有较高的内在导热系数和高电子迁移率。当混合不同的碳同位素时,可以显着降低石墨烯的热导率,从而增强热电设备的性能。在这里,我们比较了同位素C12/C13随机混合物与同位素超晶格的热导率,周期为46至225 nm。与原始的C12石墨烯相比,这些超晶格结构的拉曼光电电导率测量结果显示,导热率降低了约50%。这种平均降低类似于随机同位素混合。在超晶格中的热导率的降低通过原始石墨烯的模型和额外的Quasi One尺寸周期性界面热电阻(2.5 \ pm 0.5)\ Times 10^{ - 11} M^2 K/W的额外的尺寸周期性界面热电阻很好地描述了C12/C13边界。这与超晶格中的大型各向异性热导率一致,在该超晶格中,导热率取决于C12/C13边界的方向。
Graphene has a high intrinsic thermal conductivity and a high electron mobility. The thermal conductivity of graphene can be significantly reduced when different carbon isotopes are mixed, which can enhance the performance of thermoelectric devices. Here we compare the thermal conductivities of isotopic c12/c13 random mixes with isotope superlattices with periods ranging from 46 to 225 nm. Raman Opto-Thermal conductivity measurements of these superlattice structures show an approximately 50% reduction in thermal conductivity compared to pristine c12 graphene. This average reduction is similar to the random isotope mix. The reduction of the thermal conductivity in the superlattice is well described by a model of pristine graphene and an additional quasi-one dimensional periodic interfacial thermal resistance of (2.5\pm 0.5)\times 10^{-11} m^2 K/W for the c12/c13 boundary. This is consistent with a large anisotropic thermal conductivity in the superlattice, where the thermal conductivity depends on the orientation of the c12/c13 boundary.