论文标题
限制下的非理想气体动力学:稀疏效果,致密效应和分子相互作用
Non-ideal gas dynamics under confinement: rarefaction effect, dense effect and molecular interaction
论文作者
论文摘要
简化的动力学模型研究表面构成的不均匀流体,研究了体积排除和远距离分子间吸引的影响。理想气体的气体动力学,硬球流体和真实气体由玻尔兹曼方程,恩斯科方程和简单动力学方程式模拟。理想气体仅出现knudsen的最小值,而硬球体流体和在某些限制下的真实气体的最小值和knudsen最大值都出现,除了最大和最小值可能消失。 Boltzmann方程和Enskog方程分别高估了实际气体动力学的质量流量,分别是在限制下的实际气体动力学的质量流量,在这种情况下,体积排除和分子之间的远距离分子间有吸引力不可忽视。随着通道宽度的增加,硬球流体的气体动力学和真实气体逐渐趋向于Boltzmann预测。当固体分数较大时,密度不均匀性会阻碍流量下的流动。在恒定限制下,实际气体发生异常滑移。尽管在较大的knudsen数字下,稀疏效应更为突出,但较小的纳特族数(较大的实心部分或通道宽度)的流量贡献了更实际的传质。温度对理想气体和硬球体的密度和速度曲线没有影响,但是实际气体分子之间的能量参数随温度的升高而降低,实际气体动力学趋向于硬球。
The effects of volume exclusion and long-range intermolecular attraction are investigated by the simplified kinetic model for surface-confined inhomogeneous fluids. Gas dynamics of the ideal gas, the hard-sphere fluid and the real gas are simulated by the Boltzmann equation, the Enskog equation and the simple kinetic equation, respectively. Only the Knudsen minimum appears for the ideal gas, while both the Knudsen minimum and the Knudsen maximum occur for the hard-sphere fluid and the real gas under certain confinements, beyond which the maximum and minimum may disappear. The Boltzmann equation and the Enskog equation overestimates and underestimates the mass flow rate of the real gas dynamics under confinement, respectively, where the volume exclusion and the long-range intermolecular attractive potential among molecules are not ignorable. With the increase of the channel width, gas dynamics of the hard-sphere fluid and the real gas tends to the Boltzmann prediction gradually. The density inhomogeneity, which hinders the flow under confinement, is more obvious when the solid fraction is larger. The anomalous slip occurs for real gas under constant confinement. The flow at a smaller Knudsen number (larger solid fraction or channel width) contributes more practical amount of mass transfer, although the rarefaction effects is more prominent at larger Knudsen numbers. The temperature has no effect on density and velocity profiles of the ideal gas and the hard-sphere fluid, but the energy parameter among the real gas molecules decreases with the increasing temperature and the real gas dynamics tends to the hard-sphere ones consequently.