论文标题

关于添加数理论的反问题

On an inverse problem in additive number theory

论文作者

Tang, Min, Xu, Hongwei

论文摘要

对于$ a $,让$ p(a)$是所有有限子集的$ a $ a $的集合。在本文中,对于整数序列$ b = \ {1 <b_1 <b_1 <b_2 <\ cdots \} $和$ 3b_1+5 \ leq b_2 \ leq b_2 \ leq 6b_1+10 $,我们确定$ b_3 $的关键值,以便存在$ b_3 $,以便存在Infinite sequence $ a $ a $ a $ a $ a的$ a $ a $ a $ p(a)= \ mathbb {n} \ setminus b $。该结果表明,我们部分解决了方和方的问题[``在添加数理论中的逆问题上'',acta数学。匈牙158(2019),36-39]。

For a set $A$, let $P(A)$ be the set of all finite subset sums of $A$. In this paper, for a sequence of integers $B=\{1<b_1<b_2<\cdots\}$ and $3b_1+5\leq b_2\leq 6b_1+10$, we determine the critical value for $b_3$ such that there exists an infinite sequence $A$ of positive integers for which $P(A)=\mathbb{N}\setminus B$. This result shows that we partially solve the problem of Fang and Fang [`On an inverse problem in additive number theory', Acta Math. Hungar. 158(2019), 36-39].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源