论文标题

通过时空流行度动态缓存的加强学习

Reinforcement Learning for Caching with Space-Time Popularity Dynamics

论文作者

Sadeghi, Alireza, Giannakis, Georgios B., Wang, Gang, Sheikholeslami, Fatemeh

论文摘要

随着数据流量在有线和无线网络上的巨大增长,以及富裕媒体应用程序的越来越多,可以预见,在下一代网络中发挥关键作用。要明智地预取东西并存储内容,缓存节点应该能够学习什么以及何时缓存。考虑到地理和时间内容的流行动态,高速缓存节点的可用存储有限,以及网络缓存设置中缓存决策的交互式,制定有效的缓存政策实际上是具有挑战性的。为了应对这些挑战,本章在动态时空盛产的情况下,在单节点和网络缓存设置中提出了一种基于多功能增强学习的方法,用于近乎最佳的缓存策略设计。本文提出的策略是使用一组数值测试补充的,该策略相对于几种标准的缓存策略,介绍了所提出的方法的优点。

With the tremendous growth of data traffic over wired and wireless networks along with the increasing number of rich-media applications, caching is envisioned to play a critical role in next-generation networks. To intelligently prefetch and store contents, a cache node should be able to learn what and when to cache. Considering the geographical and temporal content popularity dynamics, the limited available storage at cache nodes, as well as the interactive in uence of caching decisions in networked caching settings, developing effective caching policies is practically challenging. In response to these challenges, this chapter presents a versatile reinforcement learning based approach for near-optimal caching policy design, in both single-node and network caching settings under dynamic space-time popularities. The herein presented policies are complemented using a set of numerical tests, which showcase the merits of the presented approach relative to several standard caching policies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源