论文标题
GSQG前方方程的全球解决方案
Global solutions for a family of GSQG front equations
论文作者
论文摘要
我们证明了具有非线性色散方程的小且平滑的初始数据的全球存在,用于在参数方案中进行广义的表面准藻型(GSQG)阵列的运动,其中$ 1 <α<2 $,其中$α= 1 $对应于SQG方程,对应于SQG方程,对应于$α= 2 $ = 2 $不可压缩的eulererequipations eulerEquilations equallerEquipations。该结果完成了以前的全球良好性结果,价格为$ 0 <α\ le 1 $。我们还使用轮廓动力学以$ 1 <α<2 $来得出GSQG前方方程。
We prove the global existence of solutions with small and smooth initial data of a nonlinear dispersive equation for the motion of generalized surface quasi-geostrophic (GSQG) fronts in a parameter regime $1<α<2$, where $α=1$ corresponds to the SQG equation and $α=2$ corresponds to the incompressible Euler equations. This result completes previous global well-posedness results for $0<α\le 1$. We also use contour dynamics to derive the GSQG front equations for $1<α<2$.