论文标题

曲霉复合物的双色图,加权森林和H-向量

Biconed graphs, weighted forests, and h-vectors of matroid complexes

论文作者

Cranford, Preston, Dochtermann, Anton, Haithcock, Evan, Marsh, Joshua, Oh, Suho, Truman, Anna

论文摘要

理查德·斯坦利(Richard Stanley)的一个众所周知的猜想认为,矩阵独立综合体的$ h $ vector是纯$ {\ Mathcal O} $ - 序列。该猜想已经针对各种类别建立,但对于图形矩阵开放。双人图是一个图形,具有两个指定的“ coning顶点”,因此该图的每个顶点都连接到至少一个coning顶点。双色调类别包括圆锥形图,渡轮图和完整的多部分图。我们研究了由双基因图引起的图形矩阵的$ h $ - 向量,从基础图的“ $ 2 $加权森林”方面提供了对其条目的组合解释。这概括了Kook和Lee的构造,他们研究了Möbiuscoinvariant($ h $ - vector的最后一个非零输入)图形矩阵的完整两部分图。我们表明,允许部分$ 2 $加权的森林产生纯净的多重复合物,其脸部计数恢复了$ h $ - vector,并为这类矩阵建立了斯坦利的猜想。我们还讨论了我们的构造如何与这类矩阵的stanley猜想(由于klee和samper)的组合加强有关。

A well-known conjecture of Richard Stanley posits that the $h$-vector of the independence complex of a matroid is a pure ${\mathcal O}$-sequence. The conjecture has been established for various classes but is open for graphic matroids. A biconed graph is a graph with two specified `coning vertices', such that every vertex of the graph is connected to at least one coning vertex. The class of biconed graphs includes coned graphs, Ferrers graphs, and complete multipartite graphs. We study the $h$-vectors of graphic matroids arising from biconed graphs, providing a combinatorial interpretation of their entries in terms of `$2$-weighted forests' of the underlying graph. This generalizes constructions of Kook and Lee who studied the Möbius coinvariant (the last nonzero entry of the $h$-vector) of graphic matroids of complete bipartite graphs. We show that allowing for partially $2$-weighted forests gives rise to a pure multicomplex whose face count recovers the $h$-vector, establishing Stanley's conjecture for this class of matroids. We also discuss how our constructions relate to a combinatorial strengthening of Stanley's Conjecture (due to Klee and Samper) for this class of matroids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源