论文标题
在彩色视网膜图像中,有和没有血管分割的微型神经瘤检测的功效
The Efficacy of Microaneurysms Detection With and Without Vessel Segmentation in Color Retinal Images
论文作者
论文摘要
需要计算机辅助诊断系统来提取有关视网膜及其变化的合适信息。特别是,从视网膜图像中识别出感兴趣的对象,例如病变和解剖结构是一个具有挑战性且迭代的过程,可以通过图像处理方法可用。微型干扰素(MAS)是由糖尿病性视网膜病变(DR)引起的这些变化的一组。实际上,MAS检测是视网膜图像分析中识别DR的主要步骤。这项研究的目的是应用一种自动方法来检测MAS,并比较有或没有血管分割的检测结果,并以正常图像或异常图像进行掩盖。检测和分割的步骤如下。在第一步中,我们使用顶帽转换确实进行了预处理。我们的主要处理包括应用ra换变换,以分割容器并掩盖它们。最后,我们使用高斯语和卷积神经网络的组合进行了MAS检测步骤。为了评估我们提出的方法的准确性,我们将我们提出的方法的输出与眼科医生收集的基础真理进行了比较。通过血管分割,我们的算法在检测MAS中发现了超过85%的灵敏度,每图像在本地视网膜数据库中,每张图像为11个假阳性速率,以及20张公共数据集(驱动器)的20张图像。同样没有容器进行分割,我们的自动化算法在检测MAS中的灵敏度约为90%,每个图像的所有120张图像的MAS,每个图像73个假阳性。总之,通过血管分割,我们具有可接受的灵敏度和特异性,这是视网膜病理学诊断算法的必要步骤。
Computer-Aided Diagnosis systems are required to extract suitable information about retina and its changes. In particular, identifying objects of interest such as lesions and anatomical structures from the retinal images is a challenging and iterative process that is doable by image processing approaches. Microaneurysm (MAs) are one set of these changes caused by diabetic retinopathy (DR). In fact, MAs detection is the main step for the identification of DR in the retinal images analysis. The objective of this study is to apply an automated method for the detection of MAs and compare the results of detection with and without vessel segmentation and masking either in the normal or abnormal image. The steps for detection and segmentation are as follows. In the first step, we did preprocessing, by using top-hat transformation. Our main processing was included applying Radon transform, to segment the vessels and masking them. At last, we did the MAs detection step using a combination of Laplacian-of-Gaussian and Convolutional Neural Networks. To evaluate the accuracy of our proposed method, we compare the output of our proposed method with the ground truth that collected by ophthalmologists. With vessel segmentation, our algorithm found a sensitivity of more than 85% in the detection of MAs with 11 false-positive rates per image for 100 color images in a local retinal database and 20 images of a public dataset (DRIVE). Also without vessel segmentation, our automated algorithm finds a sensitivity of about 90% in the detection of MAs with 73 false positives per image for all 120 images of two databases. In conclusion, with vessel segmentation, we have acceptable sensitivity and specificity, as a necessary step in some diagnostic algorithm for retinal pathology.