论文标题

将移动应用程序用法的视频录制转换为可重播的方案

Translating Video Recordings of Mobile App Usages into Replayable Scenarios

论文作者

Bernal-Cárdenas, Carlos, Cooper, Nathan, Moran, Kevin, Chaparro, Oscar, Marcus, Andrian, Poshyvanyk, Denys

论文摘要

移动应用程序的屏幕记录很容易获取并捕获与软件开发人员有关的大量信息(例如,错误或功能请求),使其成为众包应用程序反馈的流行机制。因此,这些视频已成为开发人员必须管理的常见人工制品。鉴于独特的移动开发限制,包括快速发布周期和快速发展的平台,用于分析所有类型的丰富软件工件的自动化技术为移动开发人员提供了好处。不幸的是,与其他类型的(文本)工件相比,由于其图形性质,自动分析屏幕记录提出了严重的挑战。为了应对这些挑战,本文介绍了V2s,这是一种轻巧的自动化方法,用于将Android App用法的视频录制转换为可重播的方案。 V2S主要基于计算机视觉技术,并调整了最新的解决方案,以进行对象检测和图像分类,以检测和对视频中捕获的用户操作进行分类,并将其转换为可重复的测试场景。我们对涉及175个视频的V2进行了广泛的评估,这些视频描绘了3,534个基于GUI的动作,这些操作从用户练习功能和复制80多个受欢迎的Android应用程序中的错误。我们的结果表明,V2可以准确地从屏幕录制中重播场景,并且能够以最少的开销来重现$ \ $ \ $ 89%的收集视频。与三个工业伙伴的案例研究说明了从开发人员的角度来看,V2的潜在实用性。

Screen recordings of mobile applications are easy to obtain and capture a wealth of information pertinent to software developers (e.g., bugs or feature requests), making them a popular mechanism for crowdsourced app feedback. Thus, these videos are becoming a common artifact that developers must manage. In light of unique mobile development constraints, including swift release cycles and rapidly evolving platforms, automated techniques for analyzing all types of rich software artifacts provide benefit to mobile developers. Unfortunately, automatically analyzing screen recordings presents serious challenges, due to their graphical nature, compared to other types of (textual) artifacts. To address these challenges, this paper introduces V2S, a lightweight, automated approach for translating video recordings of Android app usages into replayable scenarios. V2S is based primarily on computer vision techniques and adapts recent solutions for object detection and image classification to detect and classify user actions captured in a video, and convert these into a replayable test scenario. We performed an extensive evaluation of V2S involving 175 videos depicting 3,534 GUI-based actions collected from users exercising features and reproducing bugs from over 80 popular Android apps. Our results illustrate that V2S can accurately replay scenarios from screen recordings, and is capable of reproducing $\approx$ 89% of our collected videos with minimal overhead. A case study with three industrial partners illustrates the potential usefulness of V2S from the viewpoint of developers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源