论文标题

最佳生存树合奏

Optimal survival trees ensemble

论文作者

Gul, Naz, Faiz, Nosheen, Brawn, Dan, Kulakowski, Rafal, Khan, Zardad, Lausen, Berthold

论文摘要

最近的研究采用了一种方法,可以根据个人或集体绩效在合奏中选择准确而多样化的树木,以解决分类和回归问题。在这些调查之后,这项工作遵循,并考虑了种植最佳生存森林的可能性。最初,使用随机生存森林的方法生长了大量的生存树。然后,使用各自的生存树的脱落外观测值,将种植的树从最小到预测误差的最高价值排名。然后评估排名最高的生存树作为合奏的集体表现。该合奏是由排名第一的生存树发起的,然后通过按等级顺序将其添加到合奏中,对其进行一一测试。如果使用独立的培训数据在评估后的性能改善,则选择生存树作为合成的集合。这个合奏称为最佳树合奏(OSTE)。使用17个基准数据集评估了所提出的方法,并将结果与​​随机生存森林,有条件推理林,包装和非基于树的方法(COX比例危害模型)进行了比较。除了提高预测性能外,与其他基于树的方法相比,提出的方法还减少了集合中的生存树数量。该方法是在称为“ Oste”的R软件包中实现的。

Recent studies have adopted an approach of selecting accurate and diverse trees based on individual or collective performance within an ensemble for classification and regression problems. This work follows in the wake of these investigations and considers the possibility of growing a forest of optimal survival trees. Initially, a large set of survival trees are grown using the method of random survival forest. The grown trees are then ranked from smallest to highest value of their prediction error using out-of-bag observations for each respective survival tree. The top ranked survival trees are then assessed for their collective performance as an ensemble. This ensemble is initiated with the survival tree which stands first in rank, then further trees are tested one by one by adding them to the ensemble in order of rank. A survival tree is selected for the resultant ensemble if the performance improves after an assessment using independent training data. This ensemble is called an optimal trees ensemble (OSTE). The proposed method is assessed using 17 benchmark datasets and the results are compared with those of random survival forest, conditional inference forest, bagging and a non tree based method, the Cox proportional hazard model. In addition to improve predictive performance, the proposed method reduces the number of survival trees in the ensemble as compared to the other tree based methods. The method is implemented in an R package called "OSTE".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源