论文标题

Newell-Littlewood数字

Newell-Littlewood numbers

论文作者

Gao, Shiliang, Orelowitz, Gidon, Yong, Alexander

论文摘要

Newell-Littlewood的数字是根据其著名的表亲Littlewood-Richardson系数来定义的。两者都作为经典谎言组的张量产物多重性。它们是K. Koike-I的结构系数。对称函数环的Terada基础。 H. Hahn的最新工作研究了。我们以简单地表征了Weyl模块的检测来解决她的工作。这激发了对数字组合的进一步研究。我们考虑J. de Loera-T的思想的类似物。 McAllister,H。Derksen-J。 Weyman,S。Fomin-W。 Fulton-C.-K。 li-y.-t。 Poon,W。Fulton,R。King-C。 tollu-f。 Toumazet,M。Kleber,A。Klyachko,A。Knutson-T。陶,T。Lam-A。 Postnikov-p。 Pylavskyy,K。Mulmuley-H。 Narayanan-M。 Sohoni,H。Narayanan,A。Okounkov,J。Stembridge和H. Weyl。

The Newell-Littlewood numbers are defined in terms of their celebrated cousins, the Littlewood-Richardson coefficients. Both arise as tensor product multiplicities for a classical Lie group. They are the structure coefficients of the K. Koike-I. Terada basis of the ring of symmetric functions. Recent work of H. Hahn studies them, motivated by R. Langlands' beyond endoscopy proposal; we address her work with a simple characterization of detection of Weyl modules. This motivates further study of the combinatorics of the numbers. We consider analogues of ideas of J. De Loera-T. McAllister, H. Derksen-J. Weyman, S. Fomin-W. Fulton-C.-K. Li-Y.-T. Poon, W. Fulton, R. King-C. Tollu-F. Toumazet, M. Kleber, A. Klyachko, A. Knutson-T. Tao, T. Lam-A. Postnikov-P. Pylyavskyy, K. Mulmuley-H. Narayanan-M. Sohoni, H. Narayanan, A. Okounkov, J. Stembridge, and H. Weyl.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源