论文标题
渐近对称性和天体CFT
Asymptotic Symmetries and Celestial CFT
论文作者
论文摘要
我们提供了统一的保质软金石模式的处理,当旋转或旋转两种形式的一级波函数成为纯量规时,该模式的某些整数值$δ$。这项努力使我们在两个正在进行的辩论的十字路口有关天体CFT的适当共形基础以及零无穷大的爱因斯坦重力的渐近对称性群体是什么。有限的能量波函数由1+i \ mathbb {r} $中的主连续串联$δ\捕获,并形成完整的基础。我们表明,具有分析性持续共形维度的共形初步可以理解为主序列上的某些轮廓积分。这阐明了柔软的金石模式如何适合,但不增加此基础。通过阴影变换相关的尺寸二和零的同伴软重力显示出产生的超值脱支和天体球的非生态形态差异性,我们称为阴影超端。这使Virasoro和diff(S $^2 $)的渐近对称性提案相吻合,并在其相关软电荷的讨论中相等,这对应于应力张量及其在二维天体CFT中的阴影。
We provide a unified treatment of conformally soft Goldstone modes which arise when spin-one or spin-two conformal primary wavefunctions become pure gauge for certain integer values of the conformal dimension $Δ$. This effort lands us at the crossroads of two ongoing debates about what the appropriate conformal basis for celestial CFT is and what the asymptotic symmetry group of Einstein gravity at null infinity should be. Finite energy wavefunctions are captured by the principal continuous series $Δ\in 1+i\mathbb{R}$ and form a complete basis. We show that conformal primaries with analytically continued conformal dimension can be understood as certain contour integrals on the principal series. This clarifies how conformally soft Goldstone modes fit in but do not augment this basis. Conformally soft gravitons of dimension two and zero which are related by a shadow transform are shown to generate superrotations and non-meromorphic diffeomorphisms of the celestial sphere which we refer to as shadow superrotations. This dovetails the Virasoro and Diff(S$^2$) asymptotic symmetry proposals and puts on equal footing the discussion of their associated soft charges, which correspond to the stress tensor and its shadow in the two-dimensional celestial CFT.