论文标题

$ t \ bar {t} $,纠缠楔形横截面和拆分属性的故障

$T\bar{T}$, the entanglement wedge cross section, and the breakdown of the split property

论文作者

Asrat, Meseret, Kudler-Flam, Jonah

论文摘要

我们考虑了不相关的双跟踪操作员$ t \ bar {t} $及其密切相关但与众不同的单个跟踪对应物的二维形式相结合理论的纠缠结构的细粒探针。对于全息形式的保形场理论,可以将这些变形解释为在抗DE保健空间的紫外线区域中散装物理的修饰。因此,我们可以使用Ryu-Takayanagi公式及其对混合状态纠缠措施的概括来测试高度非平凡的一致性条件。通常,批量和边界数量之间的一致性要求分区功能在任意属的流形上等效。对于对渐近线性DILATON几何形状是双重的单迹线变形,我们发现当分离距离接近最小的有限值,仅取决于变形参数时,相互信息和反射的熵差异方面存在分离间隔。这意味着相互信息无法用作几何调节剂,该几何调节剂与反向Hagedorn温度下的分裂特性的分解有关。相比之下,对于具有有限的径向截止的双轨变形,这是对抗DE的自在空间,我们发现所有差异都消失了,包括标准的量子场理论紫外线差异,通常被视为脱节间隔的差异。我们进一步计算了共形扰动理论中的反射熵。虽然我们发现批量计算和边界计算之间正式相似的行为,但我们发现了定量不同的结果。我们评论这些分歧的解释以及必须改变的物理学以恢复一致性。我们还简要讨论$ t {\ bar j} $和$ j {\ bar t} $变形。

We consider fine-grained probes of the entanglement structure of two dimensional conformal field theories deformed by the irrelevant double-trace operator $T\bar{T}$ and its closely related but nonetheless distinct single-trace counterpart. For holographic conformal field theories, these deformations can be interpreted as modifications of bulk physics in the ultraviolet region of anti-de Sitter space. Consequently, we can use the Ryu-Takayanagi formula and its generalizations to mixed state entanglement measures to test highly nontrivial consistency conditions. In general, the agreement between bulk and boundary quantities requires the equivalence of partition functions on manifolds of arbitrary genus. For the single-trace deformation, which is dual to an asymptotically linear dilaton geometry, we find that the mutual information and reflected entropy diverge for disjoint intervals when the separation distance approaches a minimum, finite value that depends solely on the deformation parameter. This implies that the mutual information fails to serve as a geometric regulator which is related to the breakdown of the split property at the inverse Hagedorn temperature. In contrast, for the double-trace deformation, which is dual to anti-de Sitter space with a finite radial cutoff, we find all divergences to disappear including the standard quantum field theory ultraviolet divergence that is generically seen as disjoint intervals become adjacent. We furthermore compute reflected entropy in conformal perturbation theory. While we find formally similar behavior between bulk and boundary computations, we find quantitatively distinct results. We comment on the interpretation of these disagreements and the physics that must be altered to restore consistency. We also briefly discuss the $T{\bar J}$ and $J{\bar T}$ deformations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源