论文标题

用不完整的首选项计算极端可能的等级

Computing the Extremal Possible Ranks with Incomplete Preferences

论文作者

Imber, Aviram, Kimelfeld, Benny

论文摘要

各种投票规则基于通过汇总选民偏好引起的分数对候选人进行排名。赢家(分别是独特的获胜者)是一名候选人,他获得的分数不小于(严格大于)剩余候选人。此类规则的示例包括位置评分规则以及Bucklin,Copeland和Maximin规则。当选民偏好以不完整的方式以部分命令而闻名时,候选人可以根据完成部分投票的可能性是可能/必要的赢家。过去的研究深入研究了确定可能和必要的赢家和独特获胜者的计算问题。 这些问题都是关于不同决胜局在候选人的可能位置范围的特殊案例。我们研究了确定这一范围,尤其是极端位置的复杂性。在我们的结果中,我们确定找到上述每个规则的每个最低位置和最大位置都是NP,包括所有纯粹的位置评分规则。因此,对于极端位置的确定,必要/可能的获胜者确定的可拖动变体仍无法进行。当对固定$ k $的顶部$ k $位置进行推理时,可以保留障碍性。然而,最大值的是,可以决定最大排名是否为$ k $ $ k = 1 $(必要的获胜),但对于所有$ k> 1 $来说都是棘手的。

Various voting rules are based on ranking the candidates by scores induced by aggregating voter preferences. A winner (respectively, unique winner) is a candidate who receives a score not smaller than (respectively, strictly greater than) the remaining candidates. Examples of such rules include the positional scoring rules and the Bucklin, Copeland, and Maximin rules. When voter preferences are known in an incomplete manner as partial orders, a candidate can be a possible/necessary winner based on the possibilities of completing the partial votes. Past research has studied in depth the computational problems of determining the possible and necessary winners and unique winners. These problems are all special cases of reasoning about the range of possible positions of a candidate under different tiebreakers. We investigate the complexity of determining this range, and particularly the extremal positions. Among our results, we establish that finding each of the minimal and maximal positions is NP-hard for each of the above rules, including all positional scoring rules, pure or not. Hence, none of the tractable variants of necessary/possible winner determination remain tractable for extremal position determination. Tractability can be retained when reasoning about the top-$k$ positions for a fixed $k$. Yet, exceptional is Maximin where it is tractable to decide whether the maximal rank is $k$ for $k=1$ (necessary winning) but it becomes intractable for all $k>1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源