论文标题
重叠,特征值差距和伪摄影
Overlaps, Eigenvalue Gaps, and Pseudospectrum under real Ginibre and Absolutely Continuous Perturbations
论文作者
论文摘要
令$ g_n $为$ n \ times n $矩阵,带有Real I.I.D. $ n(0,1/n)$条目,让$ a $为真正的$ n \ times n $矩阵,带有$ \ vert a \ vert \ le 1 $,然后让$γ\ in(0,1)$。我们表明,概率$ 0.99 $,$ a +γg_n$具有由$ o \ left(n^{5/2}/γ^{3/2} \ right)$限制的所有特征条件编号,而eigenVector条件号和eigenVector条件编号由$ o \ weft(n^3/γ^{3/2 {3/2} $界定。此外,我们表明,对于任何$ s> 0 $,$ a +γg_n$具有两个特征值的可能性最多彼此之间的距离为$ o \ left(n^4 s^{1/3}/γ^{1/3}/γ^{5/2}} {5/2} \ right)。实际上,我们在上面的陈述中表现出更高的连续性。具有有限的力矩假设和适当的归一化。 这扩展了先前的工作[Banks等。 [2019]证明了$ o \ left的特征向量条件号(n^{3/2} /γ\ right)$,用于{\ em complect} i.i.d的更简单情况。高斯矩阵扰动。实际扰动的情况引入了较弱的抗调节性能和复杂随机变量的较弱的挑战。我们证明中的一个关键成分是复合物的小奇异值的新尾部界限$ z-(a+γg_n)$,当$ \ im z \ neq 0 $ $时,它恢复了复杂的ginibre集合的尾巴行为。这可以在伪谱参数$ε> 0 $方面对伪谱$λ_ε(a+γg_n)$的面积进行敏锐的控制,这足以通过限制参数绑定重叠和特征向量条件编号。
Let $G_n$ be an $n \times n$ matrix with real i.i.d. $N(0,1/n)$ entries, let $A$ be a real $n \times n$ matrix with $\Vert A \Vert \le 1$, and let $γ\in (0,1)$. We show that with probability $0.99$, $A + γG_n$ has all of its eigenvalue condition numbers bounded by $O\left(n^{5/2}/γ^{3/2}\right)$ and eigenvector condition number bounded by $O\left(n^3 /γ^{3/2}\right)$. Furthermore, we show that for any $s > 0$, the probability that $A + γG_n$ has two eigenvalues within distance at most $s$ of each other is $O\left(n^4 s^{1/3}/γ^{5/2}\right).$ In fact, we show the above statements hold in the more general setting of non-Gaussian perturbations with real, independent, absolutely continuous entries with a finite moment assumption and appropriate normalization. This extends the previous work [Banks et al. 2019] which proved an eigenvector condition number bound of $O\left(n^{3/2} / γ\right)$ for the simpler case of {\em complex} i.i.d. Gaussian matrix perturbations. The case of real perturbations introduces several challenges stemming from the weaker anticoncentration properties of real vs. complex random variables. A key ingredient in our proof is new lower tail bounds on the small singular values of the complex shifts $z-(A+γG_n)$ which recover the tail behavior of the complex Ginibre ensemble when $\Im z\neq 0$. This yields sharp control on the area of the pseudospectrum $Λ_ε(A+γG_n)$ in terms of the pseudospectral parameter $ε>0$, which is sufficient to bound the overlaps and eigenvector condition number via a limiting argument.