论文标题

高斯基质产物奇异值的非反应结果

Non-asymptotic Results for Singular Values of Gaussian Matrix Products

论文作者

Hanin, Boris, Paouris, Grigoris

论文摘要

本文涉及对制度中高斯矩阵产品的奇异值(和Lyapunov指数)的非反应分析,在该制度中,$ n,$ n,$ n of the Product的术语数量很大,$ n,$ n,$ the矩阵的大小,可能是大小的,可能是大的,可能是$ n $的。我们获得了Lyapunov指数总和的浓度估计值,这是对归一化平方的经验度量的定量收敛速率,即$ [0,1] $上的均匀分布的经验度量,以及$ n $的共同正态性的结果,当$ n $的联合正态性与我们的技术相关的方法很大。 $ n = \ infty $最初是由于1960年代的Furstenberg和Kesten造成的,然后由Newman和Isopi-Newman以及1980年代的许多其他作者进一步开发。我们的关键技术思想是,随机投影的小球概率为量化乘法的ergodic定理中的收敛性提供了一种方法。

This article concerns the non-asymptotic analysis of the singular values (and Lyapunov exponents) of Gaussian matrix products in the regime where $N,$ the number of term in the product, is large and $n,$ the size of the matrices, may be large or small and may depend on $N$. We obtain concentration estimates for sums of Lyapunov exponents, a quantitative rate of convergence of the empirical measure of the normalized squared singular values to the uniform distribution on $[0,1]$, and results on the joint normality of Lyapunov exponents when $N$ is sufficiently large as a function of $n.$ Our technique consists of non-asymptotic versions of the ergodic theory approach at $N=\infty$ due originally to Furstenberg and Kesten in the 1960's, which were then further developed by Newman and Isopi-Newman as well as by a number of other authors in the 1980's. Our key technical idea is that small ball probabilities for volumes of random projections give a way to quantify convergence in the multiplicative ergodic theorem for random matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源