论文标题

深入学习后处理合奏天气预报

Deep Learning for Post-Processing Ensemble Weather Forecasts

论文作者

Grönquist, Peter, Yao, Chengyuan, Ben-Nun, Tal, Dryden, Nikoli, Dueben, Peter, Li, Shigang, Hoefler, Torsten

论文摘要

量化天气预报的不确定性至关重要,特别是对于预测极端天气事件。这通常是通过集合预测系统来完成的,该系统由许多扰动的数值模拟或轨迹并行运行。这些系统与高计算成本相关,通常涉及统计后处理步骤,以廉价地提高其原始预测质量。我们提出了一个混合模型,该模型仅使用原始天气轨迹的一个子集,并结合了使用深神经网络的后处理步骤。这些使该模型能够说明非线性关系,这些关系未通过当前的数值模型或后处理方法捕获。应用于全球数据,我们的混合模型在整体预测技能(CRP)中的相对提高超过14%。此外,我们证明,对于某些案例研究,对于极端天气事件的改进是更大的。我们还表明,我们的后处理可以使用较少的轨迹来实现与完整合奏的可比结果。通过使用较少的轨迹,可以降低集合预测系统的计算成本,从而使其以更高的分辨率运行并产生更准确的预测。

Quantifying uncertainty in weather forecasts is critical, especially for predicting extreme weather events. This is typically accomplished with ensemble prediction systems, which consist of many perturbed numerical weather simulations, or trajectories, run in parallel. These systems are associated with a high computational cost and often involve statistical post-processing steps to inexpensively improve their raw prediction qualities. We propose a mixed model that uses only a subset of the original weather trajectories combined with a post-processing step using deep neural networks. These enable the model to account for non-linear relationships that are not captured by current numerical models or post-processing methods. Applied to global data, our mixed models achieve a relative improvement in ensemble forecast skill (CRPS) of over 14%. Furthermore, we demonstrate that the improvement is larger for extreme weather events on select case studies. We also show that our post-processing can use fewer trajectories to achieve comparable results to the full ensemble. By using fewer trajectories, the computational costs of an ensemble prediction system can be reduced, allowing it to run at higher resolution and produce more accurate forecasts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源