论文标题
一个以生物学启发的功能增强框架,用于零拍学习
A Biologically Inspired Feature Enhancement Framework for Zero-Shot Learning
论文作者
论文摘要
目前,大多数零射击学习(ZSL)算法都使用预训练的模型作为功能提取器,通常通过使用深神经网络对Imagenet数据集进行培训。嵌入预训练模型中的功能信息的丰富性可以帮助ZSL模型从其有限的训练样本中提取更多有用的功能。但是,有时,当前ZSL任务的训练数据集和ImageNet数据集之间的差异太大,这可能导致使用预训练的模型没有明显的帮助,甚至对ZSL模型的性能产生了负面影响。为了解决这个问题,本文提出了针对ZSL的生物学启发的功能增强框架。具体而言,我们设计了一个双通道学习框架,该框架使用辅助数据集来增强ZSL模型的特征提取器,并提出了一种新方法,以指导基于生物分类学知识的辅助数据集选择。广泛的实验结果表明,我们提出的方法可以有效地提高ZSL模型的概括能力,并在三个基准ZSL任务上实现最先进的结果。我们还通过特征可视化的方式解释了实验现象。
Most of the Zero-Shot Learning (ZSL) algorithms currently use pre-trained models as their feature extractors, which are usually trained on the ImageNet data set by using deep neural networks. The richness of the feature information embedded in the pre-trained models can help the ZSL model extract more useful features from its limited training samples. However, sometimes the difference between the training data set of the current ZSL task and the ImageNet data set is too large, which may lead to the use of pre-trained models has no obvious help or even negative impact on the performance of the ZSL model. To solve this problem, this paper proposes a biologically inspired feature enhancement framework for ZSL. Specifically, we design a dual-channel learning framework that uses auxiliary data sets to enhance the feature extractor of the ZSL model and propose a novel method to guide the selection of the auxiliary data sets based on the knowledge of biological taxonomy. Extensive experimental results show that our proposed method can effectively improve the generalization ability of the ZSL model and achieve state-of-the-art results on three benchmark ZSL tasks. We also explained the experimental phenomena through the way of feature visualization.