论文标题
围绕热星周围的近距离巨人的大气逃逸:远散热器辐射和光电加热效果
Atmospheric Escape of Close-in Giants around Hot Stars: Far-Ultraviolet Radiation and Photoelectric Heating Effect
论文作者
论文摘要
大气逃生是一个重要的过程,可以控制近距离行星的长期演变。我们对系外行星大气的光蒸发进行辐射流体动力学模拟,以研究远硫酸酯(FUV)辐射的光电加热的影响。具体来说,我们考虑在热A-Star周围的近距离热木星。热主要恒星不仅发出了极端的紫外线辐射,而且还会发出fuv辐射,因此可以通过光电加热来驱动强大的大气逃逸。我们表明,行星氛围的速度高达$ \ dot {m} \ sim10^{14} \,\ mathrm {g}〜{\ rm sec}^{ - 1} $,如果大气中含有少量的尘埃,少量的粉尘含量与当地构图的十个百分比。在长期演变中,围绕热星周围的行星可能会失去大部分大气的一部分。我们量化引起光蒸发所需的灰尘量。 $ 10^{ - 4} $的尘埃气质量比与仅具有极端紫外线辐射的情况相比,通过FUV光电加热来驱动大气逃逸。我们还探索了FUV驱动的逃生的金属性依赖性。由于光电加热的增强,质量损失的速率随着大气的金属性而增加,但随着恒星金属性的增加,恒星fuv通量会降低。我们得出了对质量损失速率的准确估计,该估计是FUV通量和金属性的函数以及行星的特征。 FUV驱动的大气逃生可能是理解和解释所谓的郡次郡沙漠的关键过程。
Atmospheric escape is an important process that controls the long-term evolution of close-in planets. We perform radiation hydrodynamics simulations of photo-evaporation of exoplanets' atmospheres to study the effect of photoelectric heating by far-ultraviolet (FUV) radiation. Specifically, we consider a close-in hot Jupiter around a hot A-star. Hot main-sequence stars emit not only extreme ultraviolet radiation but also FUV radiation, and thus can drive strong atmospheric escape by photoelectric heating. We show that the planetary atmosphere escapes at a rate as large as $\dot{M}\sim10^{14}\, \mathrm{g}~{\rm sec}^{-1}$ if the atmosphere contains a small amount of dust grains with the level of ten percent of the local interstellar medium. Close-in planets around hot stars can lose a significant fraction of the atmosphere during the long-term evolution. We quantify the amount of dust necessary for causing photoevaporation. The dust-to-gas mass ratio of $10^{-4}$ is sufficient to drive stronger atmospheric escape by FUV photoelectric heating than in the case with only extreme ultraviolet radiation. We also explore the metallicity dependence of the FUV-driven escape. The mass-loss rate increases with increasing the atmosphere's metallicity because of the enhanced photoelectric heating, but the stellar FUV flux decreases with increasing stellar metallicity. We derive an accurate estimate for the mass-loss rate as a function of FUV flux and metallicity, and of the planet's characteristics. The FUV driven atmospheric escape may be a key process to understand and explain the so-called sub-Jovian desert.