论文标题
关于$ 2 $二维的Lorentzian歧管的共形性特征的注释
Notes on a conformal characterization of $2$-dimensional Lorentzian manifolds with constant Ricci scalar curvature
论文作者
论文摘要
我们提出了$ 2 $维的Lorentzian流形的特征,并具有恒定的RICCI标量曲率。众所周知,每$ 2 $维的Lorentzian歧管都是综合的,因此我们根据保形因子重写了RICCI标量曲率,并研究了相应的微分方程的解决方案。提供了几个显着的例子。
We present a characterization of $2$-dimensional Lorentzian manifolds with constant Ricci scalar curvature. It is well known that every $2$-dimensional Lorentzian manifolds is conformally flat, so we rewrite the Ricci scalar curvature in terms of the conformal factor and we study the solutions of the corresponding differential equations. Several remarkable examples are provided.