论文标题
稳定波不存在负涡度
Nonexistence of steady waves with negative vorticity
论文作者
论文摘要
我们证明,当涡度函数为负,而伯努利常数大于明确给出的一定临界值时,没有二维的stokes和孤立波。特别是,我们获得了一个上限$ f \ lyssim \ sqrt {2} $,对于弗洛德(Froude)数量的孤立波,具有负恒定涡度,具有绝对值足够大。
We prove that no two-dimensional Stokes and solitary waves exist when the vorticity function is negative and the Bernoulli constant is greater than a certain critical value given explicitly. In particular, we obtain an upper bound $F \lesssim \sqrt{2}$ for the Froude number of solitary waves with a negative constant vorticity, sufficiently large in absolute value.