论文标题
公制$ f $ - 接触歧管满足$(κ,μ)$ - 无效条件
Metric $f$-contact manifolds satisfying the $(κ,μ)$-nullity condition
论文作者
论文摘要
我们证明,如果$ f $ -sectional curvature在任何点上的$ p $ $ p $ a $(2n+s)$ - 尺寸$ f $ - $ f $ - $ f $ - $(κ,μ)$ coprold a $ n> 1 $ a $ a $ a $ a $ a $ a $ a $ cop a $ n> $独立于$ p $的$ f $ section,那么在多种多样中是恒定的。此外,我们还证明$ f $ - $(κ,μ)$歧管不是$ s $ - manifold,当时仅当$μ=κ+1 $时,我们就会为弯曲量量量张紧时提供明确的表达。最后,我们提出一些例子。
We prove that if the $f$-sectional curvature at any point $p$ of a $(2n+s)$-dimensional $f$-$(κ,μ)$ manifold with $n>1$ is independent of the $f$-section at $p$, then it is constant on the manifold. Moreover, we also prove that an $f$-$(κ,μ)$ manifold which is not an $S$-manifold is of constant $f$-sectional curvature if and only if $μ=κ+1$ and we give an explicit expression for the curvature tensor field. Finally, we present some examples.