论文标题

基于秘密共享的线性推理的私人边缘计算

Private Edge Computing for Linear Inference Based on Secret Sharing

论文作者

Schlegel, Reent, Kumar, Siddhartha, Rosnes, Eirik, Amat, Alexandre Graell i

论文摘要

我们考虑一个边缘计算方案,用户希望在本地,私人数据和网络范围内的公共矩阵上执行线性计算。用户将计算卸载到位于网络边缘的边缘服务器,但不希望服务器或任何其他具有访问无线链接的聚会获得有关其数据的任何信息。我们提供了一个方案,该方案可以保证窃听器的信息理论用户数据隐私,并访问许多边缘服务器或其相应的通信链接。拟议方案的新颖性在于利用秘密共享和部分复制来提供隐私,减轻散布服务器的效果,并允许在下载阶段中提供关节束缚的机会,以最大程度地减少包括安装,计算和下载延迟的整体延迟。

We consider an edge computing scenario where users want to perform a linear computation on local, private data and a network-wide, public matrix. Users offload computations to edge servers located at the edge of the network, but do not want the servers, or any other party with access to the wireless links, to gain any information about their data. We provide a scheme that guarantees information-theoretic user data privacy against an eavesdropper with access to a number of edge servers or their corresponding communication links. The novelty of the proposed scheme lies in the utilization of secret sharing and partial replication to provide privacy, mitigate the effect of straggling servers, and to allow for joint beamforming opportunities in the download phase, to minimize the overall latency, consisting of upload, computation, and download latencies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源