论文标题

产品见解:分析网络搜索中的产品意图

Product Insights: Analyzing Product Intents in Web Search

论文作者

Rao, Nikitha, Bansal, Chetan, Mukherjee, Subhabrata, Maddila, Chandra

论文摘要

网络搜索引擎经常用于访问有关产品的信息。随着电子商务的普及,最近的情况有所增加。但是,在网络上搜索产品搜索时,对用户搜索的搜索及其意图的了解有限。在这项工作中,我们研究了从Bing Web搜索引擎的搜索日志,以表征用户意图并研究产品搜索的用户行为。我们通过分析产品搜索查询提出了产品意图的分类学。鉴于只有15%-17%的Web搜索查询是关于产品的,这是一项艰巨的任务。我们使用查询日志功能培训机器学习分类器,以根据意图进行查询,总体F1分数为78%。我们进一步分析了产品搜索查询的各种特征,例如搜索指标,例如停留时间,成功,受欢迎程度和特定于会话的信息。

Web search engines are frequently used to access information about products. This has increased in recent times with the rising popularity of e-commerce. However, there is limited understanding of what users search for and their intents when it comes to product search on the web. In this work, we study search logs from Bing web search engine to characterize user intents and study user behavior for product search. We propose a taxonomy of product intents by analyzing product search queries. This is a challenging task given that only 15%-17% of web search queries are about products. We train machine learning classifiers with query log features to classify queries based on intent with an overall F1-score of 78%. We further analyze various characteristics of product search queries in terms of search metrics like dwell time, success, popularity and session-specific information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源