论文标题
$ \ mathbb {s}^3 $中的紧凑型对称CMC表面的DPW潜力
DPW Potentials for Compact Symmetric CMC Surfaces in $\mathbb{S}^3$
论文作者
论文摘要
受Heller [12]的启发,我们表明Lawson Surface $ξ_{K-1,L-1} $有可能从中重建最小的沉浸式$ F:ξ_{K-1,L-1,L-1} \ to \ Mathbb {s}^3 $通过DPW方法。此外,我们将结果扩展到浸入3个球体中的表面,并具有恒定的平均曲率,从而满足某些对称条件。
Inspired by the work of Heller [12], we show that there exists a DPW potential for the Lawson surface $ξ_{k-1, l-1}$ from which it is possible to reconstruct the minimal immersion $f: ξ_{k-1, l-1} \to \mathbb{S}^3$ via the DPW method. Moreover, we extend the result to surfaces immersed in the 3-sphere with constant mean curvature which satisfy a certain symmetric condition.