论文标题

法定系统的代数模型

An Algebraic Model For Quorum Systems

论文作者

Pellegrini, Alex, Zanolini, Luca

论文摘要

法定人数系统是用于捕获信任假设的分布式耐故障计算中的关键数学抽象。法定人数系统是所有过程的子集的集合,称为法定人数,每对Quorums都有一个非空交集的属性。它们可以在许多可靠的分布式系统的核心中找到,例如云计算平台,分布式存储系统和区块链。在本文中,我们从基于多数的法定人数系统开始,将其扩展到拜占庭法规系统,从而对法定系统进行新的解释。我们提出了利用多元多项式理想,结合这些系统的特性并研究其代数品种的多元多项式理想的基础理论的代数表示。为了实现这一目标,我们将利用布尔格罗布纳基地的属性。布尔格罗布纳基地的良好性质使我们避免了检查一致性和可用性所需的一部分组合计算。我们的结果提供了一种新型的方法,可以从代数和算法的角度来测试法定系统属性。

Quorum systems are a key mathematical abstraction in distributed fault-tolerant computing for capturing trust assumptions. A quorum system is a collection of subsets of all processes, called quorums, with the property that each pair of quorums have a non-empty intersection. They can be found at the core of many reliable distributed systems, such as cloud computing platforms, distributed storage systems and blockchains. In this paper we give a new interpretation of quorum systems, starting with classical majority-based quorum systems and extending this to Byzantine quorum systems. We propose an algebraic representation of the theory underlying quorum systems making use of multivariate polynomial ideals, incorporating properties of these systems, and studying their algebraic varieties. To achieve this goal we will exploit properties of Boolean Groebner bases. The nice nature of Boolean Groebner bases allows us to avoid part of the combinatorial computations required to check consistency and availability of quorum systems. Our results provide a novel approach to test quorum systems properties from both algebraic and algorithmic perspectives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源