论文标题
特征转换合奏模型,具有批处频谱正则化的跨域少量分类
Feature Transformation Ensemble Model with Batch Spectral Regularization for Cross-Domain Few-Shot Classification
论文作者
论文摘要
在本文中,我们提出了一个特征转换集合模型,具有批次光谱正则化,用于跨域少数学习(CD-FSL)挑战。具体而言,我们建议通过在特征提取网络之后执行各种特征转换来构建集合预测模型。在模型的每个分支预测网络上,我们使用批处理光谱正则化项来抑制预训练期间特征矩阵的奇异值,以提高模型的概括能力。然后可以在目标域中微调所提出的模型,以解决一些射击分类。我们还进一步应用了标签传播,熵最小化和数据增强,以减轻目标域标记数据的短缺。实验是在许多具有四个目标域的CD-FSL基准任务上进行的,结果证明了我们提出的模型的优越性。
In this paper, we propose a feature transformation ensemble model with batch spectral regularization for the Cross-domain few-shot learning (CD-FSL) challenge. Specifically, we proposes to construct an ensemble prediction model by performing diverse feature transformations after a feature extraction network. On each branch prediction network of the model we use a batch spectral regularization term to suppress the singular values of the feature matrix during pre-training to improve the generalization ability of the model. The proposed model can then be fine tuned in the target domain to address few-shot classification. We also further apply label propagation, entropy minimization and data augmentation to mitigate the shortage of labeled data in target domains. Experiments are conducted on a number of CD-FSL benchmark tasks with four target domains and the results demonstrate the superiority of our proposed model.