论文标题

多标签不平衡的野外大规模对象检测

Large-Scale Object Detection in the Wild from Imbalanced Multi-Labels

论文作者

Peng, Junran, Bu, Xingyuan, Sun, Ming, Zhang, Zhaoxiang, Tan, Tieniu, Yan, Junjie

论文摘要

使用更多数据的培训一直是改善深度学习时代性能的最稳定和有效方法。作为迄今为止最大的对象检测数据集,打开图像为对象检测带来了巨大的机会和挑战,通常是一般和复杂的场景。但是,由于其半自动收集和标记管道以处理庞大的数据量表,因此,开放式图像数据集遇到了与标签相关的问题,对象可能明确或隐式具有多个标签,并且标签分布非常不平衡。在这项工作中,我们定量分析了这些标签问题,并提供了一个简单但有效的解决方案。我们设计了一个并发的SoftMax来处理对象检测中的多标签问题,并通过混合培训调度程序提出了一种软采样方法来处理标签不平衡。总体而言,我们的方法产生了3.34分的显着改善,在公共对象检测测试集的开放式图像集上获得了最佳单个模型。我们的结局成绩达到了67.17地图,比开放图像公共测试2018的最佳结果高4.29点。

Training with more data has always been the most stable and effective way of improving performance in deep learning era. As the largest object detection dataset so far, Open Images brings great opportunities and challenges for object detection in general and sophisticated scenarios. However, owing to its semi-automatic collecting and labeling pipeline to deal with the huge data scale, Open Images dataset suffers from label-related problems that objects may explicitly or implicitly have multiple labels and the label distribution is extremely imbalanced. In this work, we quantitatively analyze these label problems and provide a simple but effective solution. We design a concurrent softmax to handle the multi-label problems in object detection and propose a soft-sampling methods with hybrid training scheduler to deal with the label imbalance. Overall, our method yields a dramatic improvement of 3.34 points, leading to the best single model with 60.90 mAP on the public object detection test set of Open Images. And our ensembling result achieves 67.17 mAP, which is 4.29 points higher than the best result of Open Images public test 2018.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源