论文标题
量子耦合群集单打和双倍的量子量子本质量ANSATZ用于电子结构计算
Qubit coupled cluster singles and doubles variational quantum eigensolver ansatz for electronic structure calculations
论文作者
论文摘要
据信,用于电子结构计算的变异量子本量(VQE)被认为是近期量子计算的主要潜在应用。在所有提出的VQE算法中,统一的耦合群集单打和双打激发(UCCSD)VQE ANSATZ获得了很高的精度,并获得了很多研究兴趣。但是,在使用Jordan-Wigner Transformation时,基于费米子激发的UCCSD VQE需要额外的术语。在这里,我们基于保留粒子的交换门来引入一个新的VQE ANSATZ,以实现量子激励。拟议的VQE ANSATZ的大门复杂性上升到$ O(n^4)$,其中$ n $是汉密尔顿人的数量。使用拟议的VQE ANSATZ使用诸如Beh $ _2 $,H $ _2 $ O,N $ _2 $,H $ _4 $和H $ _6 $的简单分子系统的数值结果,在$ 10^{ - 3} $ HARTREE中提供了非常准确的结果。
Variational quantum eigensolver (VQE) for electronic structure calculations is believed to be one major potential application of near term quantum computing. Among all proposed VQE algorithms, the unitary coupled cluster singles and doubles excitations (UCCSD) VQE ansatz has achieved high accuracy and received a lot of research interest. However, the UCCSD VQE based on fermionic excitations needs extra terms for the parity when using Jordan-Wigner transformation. Here we introduce a new VQE ansatz based on the particle preserving exchange gate to achieve qubit excitations. The proposed VQE ansatz has gate complexity up-bounded to $O(n^4)$ where $n$ is the number of qubits of the Hamiltonian. Numerical results of simple molecular systems such as BeH$_2$, H$_2$O, N$_2$, H$_4$ and H$_6$ using the proposed VQE ansatz gives very accurate results within errors about $10^{-3}$ Hartree.