论文标题
化学热力学的信息几何不平等现象
Information Geometric Inequalities of Chemical Thermodynamics
论文作者
论文摘要
我们研究化学热力学和信息几何形状之间的联系。我们阐明了理想稀释溶液的Gibbs自由能与称为$ f $ divergence的信息几何数量之间的关系。从这种关系中,我们得出信息几何不等式,这些不平等现象给Gibbs自由能的变化速度和化学波动的一般界限提供了速度限制。这些信息几何不平等现象可以被视为用速率方程式描述的化学反应网络的cramér-rao不平等的概括,在这种反应网络中,不均衡的浓度分布非常重要而不是概率分布。它们对于不保守总浓度的阻尼振荡反应网络和系统,因此无法归一化。我们还使用$ f $ divergence引起的几何结构,在浓度分布的多种浓度分布中建立了权衡关系。我们的结果适用于封闭和开放的化学反应网络,因此从信息几何学的角度来看,它们对于化学系统的热力学分析非常有用。
We study a connection between chemical thermodynamics and information geometry. We clarify a relation between the Gibbs free energy of an ideal dilute solution and an information-geometric quantity called an $f$-divergence. From this relation, we derive information-geometric inequalities that give a speed limit for a changing rate of the Gibbs free energy and a general bound of chemical fluctuations. These information-geometric inequalities can be regarded as generalizations of the Cramér--Rao inequality for chemical reaction networks described by rate equations, where unnormalized concentration distributions are of importance rather than probability distributions. They hold true for damped oscillatory reaction networks and systems where the total concentration is not conserved so that the distribution cannot be normalized. We also formulate a trade-off relation between speed and time on a manifold of concentration distribution by using the geometrical structure induced by the $f$-divergence. Our results apply to both closed and open chemical reaction networks, thus they are widely useful for thermodynamic analysis of chemical systems from the viewpoint of information geometry.