论文标题
混合DNNS:混合的混合神经网络混合输入
Hybrid-DNNs: Hybrid Deep Neural Networks for Mixed Inputs
论文作者
论文摘要
大数据和高性能计算的快速发展鼓励了对地球科学深度学习的爆炸性研究。但是,大多数研究仅将单类型数据作为输入,从而消除了宝贵的多源,多尺度信息。我们开发了混合深神经网络(HDNN)的一般体系结构,以支持混合输入。关于特征学习和目标学习的结合,新提出的网络在高层次结构提取和深入的数据挖掘方面提供了巨大的能力。此外,混合体系结构是多个网络的聚合,表现出良好的灵活性和广泛的适用性。多个网络的配置取决于应用程序任务,并且随输入和目标而变化。专注于储层生产预测,将特定的HDNN模型配置并应用于石油开发模块。考虑到它们对碳氢化合物生产,核心照片,记录图像和曲线的贡献,地质和工程参数都可以作为输入。预处理后,将混合输入作为常规采样的结构和数值数据制备。对于特征学习,卷积神经网络(CNN)和多层感知器(MLP)网络被配置为单独处理结构和数值输入。然后将学习的功能串联并馈送到随后的网络以进行目标学习。与典型的MLP模型和CNN模型进行比较,强调了提出的HDNN模型的优越性,具有高精度和良好的概括。
Rapid development of big data and high-performance computing have encouraged explosive studies of deep learning in geoscience. However, most studies only take single-type data as input, frittering away invaluable multisource, multi-scale information. We develop a general architecture of hybrid deep neural networks (HDNNs) to support mixed inputs. Regarding as a combination of feature learning and target learning, the new proposed networks provide great capacity in high-hierarchy feature extraction and in-depth data mining. Furthermore, the hybrid architecture is an aggregation of multiple networks, demonstrating good flexibility and wide applicability. The configuration of multiple networks depends on application tasks and varies with inputs and targets. Concentrating on reservoir production prediction, a specific HDNN model is configured and applied to an oil development block. Considering their contributions to hydrocarbon production, core photos, logging images and curves, geologic and engineering parameters can all be taken as inputs. After preprocessing, the mixed inputs are prepared as regular-sampled structural and numerical data. For feature learning, convolutional neural networks (CNN) and multilayer perceptron (MLP) network are configured to separately process structural and numerical inputs. Learned features are then concatenated and fed to subsequent networks for target learning. Comparison with typical MLP model and CNN model highlights the superiority of proposed HDNN model with high accuracy and good generalization.