论文标题

使用多模型深度学习

North Atlantic Right Whales Up-call Detection Using Multimodel Deep Learning

论文作者

Ibrahim, Ali K, Zhuang, Hanqi, Ch'erubin, Laurent M., Erdol, Nurgun, Corry-Crowe, Gregory O, Ali, Ali Muhamed

论文摘要

本文介绍了一种使用多模型深度学习(MMDL)的北大西洋右鲸(NARW)的新方法。在这种方法中,首先将来自被动声传感器的信号转换为频谱图和缩放图像,这是信号的时频表示。这些图像依次用于训练MMDL检测器,由卷积神经网络(CNN)和堆叠的自动编码器(SAE)组成。我们的实验研究表明,CNNS在带有SCA分类图的频谱图和SAE中更好地工作。因此,在我们的实验设计中,CNN是通过使用频谱图IM-AGE训练的,并且通过使用缩放图图像对SAE进行训练。融合机制用于融合各个神经网络的结果。在本文中,将从MMDL检测器获得的结果与从传统机器学习算法获得的手工艺特征训练的结果进行了比较。结果表明,就上呼叫检测率,非通话检测率和错误的警报率而言,MMDL检测器的性能比代表性的常规机器学习方法的表现要好得多。

A new method for North Atlantic Right Whales (NARW) up-call detection using Multimodel Deep Learning (MMDL) is presented in this paper. In this approach, signals from passive acoustic sensors are first converted to spectrogram and scalogram images, which are time-frequency representations of the signals. These images are in turn used to train an MMDL detec-tor, consisting of Convolutional Neural Networks (CNNs) and Stacked Auto Encoders (SAEs). Our experimental studies revealed that CNNs work better with spectrograms and SAEs with sca-lograms. Therefore in our experimental design, the CNNs are trained by using spectrogram im-ages, and the SAEs are trained by using scalogram images. A fusion mechanism is used to fuse the results from individual neural networks. In this paper, the results obtained from the MMDL detector are compared with those obtained from conventional machine learning algorithms trained with handcraft features. It is shown that the performance of the MMDL detector is sig-nificantly better than those of the representative conventional machine learning methods in terms of up-call detection rate, non-up-call detection rate, and false alarm rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源