论文标题

通过无对齐的无晶格MMI检测唤醒单词检测

Wake Word Detection with Alignment-Free Lattice-Free MMI

论文作者

Wang, Yiming, Lv, Hang, Povey, Daniel, Xie, Lei, Khudanpur, Sanjeev

论文摘要

始终在语言界面,例如个人数字助理,依靠一个唤醒词开始处理口语输入。我们提出了从部分标记的培训数据中训练混合DNN/HMM唤醒单词检测系统的新方法,并将其用于在线应用中:(i)我们删除了LF-MMI培训算法中帧级对准的先决条件(ii)我们表明,经典的关键字/填充模型必须为良好性能的明确非语音(沉默)模型补充; (iii)我们提出了一个基于FST的解码器,以执行在线检测。我们在两个真实数据集上评估了我们的方法,显示50%-90%的错误拒绝率以预先指定的虚假警报率与以前发表的最佳数字相比,并将它们重新验证为第三(大)数据集。

Always-on spoken language interfaces, e.g. personal digital assistants, rely on a wake word to start processing spoken input. We present novel methods to train a hybrid DNN/HMM wake word detection system from partially labeled training data, and to use it in on-line applications: (i) we remove the prerequisite of frame-level alignments in the LF-MMI training algorithm, permitting the use of un-transcribed training examples that are annotated only for the presence/absence of the wake word; (ii) we show that the classical keyword/filler model must be supplemented with an explicit non-speech (silence) model for good performance; (iii) we present an FST-based decoder to perform online detection. We evaluate our methods on two real data sets, showing 50%--90% reduction in false rejection rates at pre-specified false alarm rates over the best previously published figures, and re-validate them on a third (large) data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源