论文标题
离散时间,流行SIS和SIR模型的灭绝和准平台
Extinction and quasi-stationarity for discrete-time, endemic SIS and SIR models
论文作者
论文摘要
引入和分析了随机离散时间SI和SIR模型。对于确定性,平均场模型,基本的生殖数$ r_0 $决定了它们的全局动态。如果$ r_0 \ le 1 $,则感染个体的频率渐近地收敛到零。如果$ r_0> 1 $,则传染性阶级一直持续存在;给出了全球稳定,流行平衡的条件。相比之下,感染在有限的时间内灭绝,随机模型中的所有$ r_0 $值概率是一个。为了了解灭绝之前的瞬态长度以及瞬变的行为,使用大偏差方法分析了准平台和相关的平均消光时间。当$ r_0> 1 $时,这些平均灭绝时间被证明会随着人口大小$ n $的指数增加。此外,随着$ n $接近$ \ infty $,准平台分布由远离灭绝的紧凑型组支持;还给出了确定性模型的地方性平衡处的足够条件,以使其融合到狄拉克度量。相比之下,当$ r_0 <1 $ $ r_0 <1 $时,灭绝的平均时间在$ 1/(1-α)$以上限制在$α<1 $的情况下是罕见时感染的几何降低率;随着$ n $接近$ \ infty $,准平台分布将确定性模型的无疾病平衡汇总为狄拉克度量。对于几种特殊情况,给出了用于近似准平台分布和相关平均灭绝的明确公式。这些公式说明了如何任意小$ r_0 $值,平均灭绝时间可以任意大,以及如何对任意大的$ r_0 $值,平均灭绝时间可以任意大。
Stochastic discrete-time SIS and SIR models of endemic diseases are introduced and analyzed. For the deterministic, mean-field model, the basic reproductive number $R_0$ determines their global dynamics. If $R_0\le 1$, then the frequency of infected individuals asymptotically converges to zero. If $R_0>1$, then the infectious class uniformly persists for all time; conditions for a globally stable, endemic equilibrium are given. In contrast, the infection goes extinct in finite time with probability one in the stochastic models for all $R_0$ values. To understand the length of the transient prior to extinction as well as the behavior of the transients, the quasi-stationary distributions and the associated mean time to extinction are analyzed using large deviation methods. When $R_0>1$, these mean times to extinction are shown to increase exponentially with the population size $N$. Moreover, as $N$ approaches $\infty$, the quasi-stationary distributions are supported by a compact set bounded away from extinction; sufficient conditions for convergence to a Dirac measure at the endemic equilibrium of the deterministic model are also given. In contrast, when $R_0<1$, the mean times to extinction are bounded above $1/(1-α)$ where $α<1$ is the geometric rate of decrease of the infection when rare; as $N$ approaches $\infty$, the quasi-stationary distributions converge to a Dirac measure at the disease-free equilibrium for the deterministic model. For several special cases, explicit formulas for approximating the quasi-stationary distribution and the associated mean extinction are given. These formulas illustrate how for arbitrarily small $R_0$ values, the mean time to extinction can be arbitrarily large, and how for arbitrarily large $R_0$ values, the mean time to extinction can be arbitrarily large.