论文标题

量子相干性的资源理论与概率不可分割的指针和相应的波粒偶性理论

Resource theory of quantum coherence with probabilistically non-distinguishable pointers and corresponding wave-particle duality

论文作者

Srivastava, Chirag, Das, Sreetama, Sen, Ujjwal

论文摘要

量子力学的基本特征之一是叠加原理,其表现体现在量子相干性中。量子状态的连贯性总是根据首选指针状态定义,并且在确定性以及概率上可区分的量子态矢量集方面存在量子相干度量。在这里,我们研究了一组任意的量子态向量的量子相干性的资源理论,甚至可能在概率上可以区分。从几何上讲,概率难以区分的量子状态向量构成线性依赖的集合。我们发现资源理论的自由状态,并分析相应的自由操作,从而获得了任意量子操作的必要条件。我们确定一类量子相干性的度量,特别是建立了措施的单调性能。我们发现,关于所考虑的资源理论,一组任意的量子状态向量与正算子有价值的测量值的联系,这为自由状态的替代定义铺平了道路。我们注意到,魔术的资源理论可以看作是一组量子状态向量的量子相干性的资源理论,这些量子态在概率上是无法区分的。随后,我们可以在双缝设置中检查波粒偶性,其中可能是概率不可分割的量子态向量的叠加。具体而言,我们报告了这种设置中量子相干性与路径区分性之间的互补关系。

One of the fundamental features of quantum mechanics is the superposition principle, a manifestation of which is embodied in quantum coherence. Coherence of a quantum state is invariably defined with respect to a preferred set of pointer states, and there exist quantum coherence measures with respect to deterministically as well as probabilistically distinguishable sets of quantum state vectors. Here we study the resource theory of quantum coherence with respect to an arbitrary set of quantum state vectors, that may not even be probabilistically distinguishable. Geometrically, a probabilistically indistinguishable set of quantum state vectors forms a linearly dependent set. We find the free states of the resource theory, and analyze the corresponding free operations, obtaining a necessary condition for an arbitrary quantum operation to be free. We identify a class of measures of the quantum coherence, and in particular establish a monotonicity property of the measures. We find a connection of an arbitrary set of quantum state vectors with positive operator valued measurements with respect to the resource theory being considered, which paves the way for an alternate definition of the free states. We notice that the resource theory of magic can be looked upon as a resource theory of quantum coherence with respect to a set of quantum state vectors that are probabilistically indistinguishable. We subsequently examine the wave-particle duality in a double-slit set-up in which superposition of probabilistically indistinguishable quantum state vectors is possible. Specifically, we report a complementary relation between quantum coherence and path distinguishability in such a set-up.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源