论文标题
使用网络计算的标准信用行为对TSN中多个类AVB流量的延迟分析
Latency Analysis of Multiple Classes of AVB Traffic in TSN with Standard Credit Behavior using Network Calculus
论文作者
论文摘要
时间敏感的网络(TSN)是一组修正案,可扩展以太网以支持工业自动化,航空航天和汽车区域中分布式安全至关重要的实时应用。 TSN集成了多种流量类型,并支持多种组合中的交互。在本文中,我们考虑基于Gate-Control-Lists(GCLS),AUDIO-VIDEO-BRIDGING(AVB)流量计划的计划支撑流量(ST)流量,根据IEEE 802.1BA,其有限的潜伏期和最佳富特(BE)流量,以提供保证。本文将定时分析方法扩展到多个AVB类,并证明多个类AVB流量的信用范围,分别在后卫乐队(GB)期间的冷冻和非冻结的信用行为下。它们是基于信用的塑造者(CBS)的非溢流信用的先决条件,并防止了AVB流量的饥饿。此外,本文提出了一种改进的时序分析方法,通过考虑物理链路速率和CBS的输出的局限性,减少了最严重的AVB流量端到端延迟的悲观情绪。最后,我们评估了对合成和现实世界测试案例的改进分析方法,显示了与相关工作相比,在潜伏期界限上的悲观主义显着降低,并与模拟结果相比提出了正确的验证。在GB期间,我们还比较了AVB潜伏期范围。此外,我们通过ST流量的负载和AVB流量的带宽保留的变化来评估方法的可伸缩性。
Time-Sensitive Networking (TSN) is a set of amendments that extend Ethernet to support distributed safety-critical and real-time applications in the industrial automation, aerospace and automotive areas. TSN integrates multiple traffic types and supports interactions in several combinations. In this paper we consider the configuration supporting Scheduled Traffic (ST) traffic scheduled based on Gate-Control-Lists (GCLs), Audio-Video-Bridging (AVB) traffic according to IEEE 802.1BA that has bounded latencies, and Best-Effort (BE) traffic, for which no guarantees are provided. The paper extends the timing analysis method to multiple AVB classes and proofs the credit bounds for multiple classes of AVB traffic, respectively under frozen and non-frozen behaviors of credit during guard band (GB). They are prerequisites for non-overflow credits of Credit-Based Shaper (CBS) and preventing starvation of AVB traffic. Moreover, this paper proposes an improved timing analysis method reducing the pessimism for the worst-case end-to-end delays of AVB traffic by considering the limitations from the physical link rate and the output of CBS. Finally, we evaluate the improved analysis method on both synthetic and real-world test cases, showing the significant reduction of pessimism on latency bounds compared to related work, and presenting the correctness validation compared with simulation results. We also compare the AVB latency bounds in the case of frozen and non-frozen credit during GB. Additionally, we evaluate the scalability of our method with variation of the load of ST flows and of the bandwidth reservation for AVB traffic.