论文标题

时间周期性开放量子系统的时间相关性和光谱的浮点理论:应用于旋转波近似之外的挤压参数振荡

Floquet theory for temporal correlations and spectra in time-periodic open quantum systems: Application to squeezed parametric oscillation beyond the rotating-wave approximation

论文作者

Navarrete-Benlloch, C., Garcés, R., Mohseni, N., de Valcárcel, G. J.

论文摘要

开放的量子系统可以由于外部周期性调制或通常在HOPF分叉后的自脉冲现象而在经典级别显示周期性动态。在这两种情况下,经典溶液周围的量子波动均未达到量子统计的固态,从而阻止采用用于固定量子系统的简单可靠的方法。在这里,我们提出了一种通用,有效的方法,以计算两次相关性和相应的光谱密度的时间周期性开放量子系统,以便其动力学的通常线性化(高斯)近似值。使用Floquet理论,我们展示了如何通过将时间域分配到一个周期持续时间间隔中,并将每个时期的属性与第一个时期相关联,从而有效地集成了波动的量子langevin方程。现在在二维时间域中计算的光谱密度(如挤压光谱)也类似地计算出来,该域被视为带有一周期X单周期单元的棋盘。该技术避免了累积数值错误,并有效地节省了计算时间。作为该方法的说明,我们分析了阻尼参数驱动的振荡器(退化参数振荡器)低于阈值的量子波动,远离旋转波近似条件,这是现代低频量子振荡器的相关情况。我们的方法表明,这种设备的挤压性能在调制的幅度或振荡器质量低的幅度上非常强大,尽管对于远离旋转波近似值内预测的参数的最佳挤压可能会显示出最佳的挤压。

Open quantum systems can display periodic dynamics at the classical level either due to external periodic modulations or to self-pulsing phenomena typically following a Hopf bifurcation. In both cases, the quantum fluctuations around classical solutions do not reach a quantum-statistical stationary state, which prevents adopting the simple and reliable methods used for stationary quantum systems. Here we put forward a general and efficient method to compute two-time correlations and corresponding spectral densities of time-periodic open quantum systems within the usual linearized (Gaussian) approximation for their dynamics. Using Floquet theory we show how the quantum Langevin equations for the fluctuations can be efficiently integrated by partitioning the time domain into one-period duration intervals, and relating the properties of each period to the first one. Spectral densities, like squeezing spectra, are computed similarly, now in a two-dimensional temporal domain that is treated as a chessboard with one-period x one-period cells. This technique avoids cumulative numerical errors as well as efficiently saves computational time. As an illustration of the method, we analyze the quantum fluctuations of a damped parametrically-driven oscillator (degenerate parametric oscillator) below threshold and far away from rotating-wave approximation conditions, which is a relevant scenario for modern low-frequency quantum oscillators. Our method reveals that the squeezing properties of such devices are quite robust against the amplitude of the modulation or the low quality of the oscillator, although optimal squeezing can appear for parameters that are far from the ones predicted within the rotating-wave approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源