论文标题

代数曲线的杜布罗温三倍

The Dubrovin threefold of an algebraic curve

论文作者

Agostini, Daniele, Çelik, Türkü Özlüm, Sturmfels, Bernd

论文摘要

由固定复合体代数曲线产生的KadomtSeV-PetViaShvili方程的解决方案通过加权投影空间中的三倍进行了参数,我们以Boris Dubrovin的名字命名。非线性代数的当前方法用于研究参数化和定义三倍的理想。我们强调了先验表示与确切的代数计算之间的二分法。代数方面,我们的主要结果是Dubrovin三倍的曲折变性为基础规范曲线的乘积和加权射射线平面。

The solutions to the Kadomtsev-Petviashvili equation that arise from a fixed complex algebraic curve are parametrized by a threefold in a weighted projective space, which we name after Boris Dubrovin. Current methods from nonlinear algebra are applied to study parametrizations and defining ideals of Dubrovin threefolds. We highlight the dichotomy between transcendental representations and exact algebraic computations. Our main result on the algebraic side is a toric degeneration of the Dubrovin threefold into the product of the underlying canonical curve and a weighted projective plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源