论文标题

C-Mi-GAN:使用Minmax公式的条件互信息估算

C-MI-GAN : Estimation of Conditional Mutual Information using MinMax formulation

论文作者

Mondal, Arnab Kumar, Bhattacharya, Arnab, Mukherjee, Sudipto, AP, Prathosh, Kannan, Sreeram, Asnani, Himanshu

论文摘要

由于其多方面的应用,估计信息理论量(例如相互信息及其条件变异)的估计引起了人们的兴趣。这些数量的新提议的神经估计器已经克服了高维度的基于$ k $ nn的经典估计量的严重缺点。在这项工作中,我们通过将其公式作为MinMax优化问题来关注条件互信息(CMI)估计。这样的公式导致类似于生成对抗网络的联合训练程序。我们发现,我们提出的估计器比现有方法在各种模拟数据集上提供了更好的估计值,该数据集包括变量之间的线性和非线性关系。作为CMI估计的应用,我们对有条件独立性(CI)测试的估计量比实际数据进行了更好的结果,并获得了比最新的CI测试人员更好的结果。

Estimation of information theoretic quantities such as mutual information and its conditional variant has drawn interest in recent times owing to their multifaceted applications. Newly proposed neural estimators for these quantities have overcome severe drawbacks of classical $k$NN-based estimators in high dimensions. In this work, we focus on conditional mutual information (CMI) estimation by utilizing its formulation as a minmax optimization problem. Such a formulation leads to a joint training procedure similar to that of generative adversarial networks. We find that our proposed estimator provides better estimates than the existing approaches on a variety of simulated data sets comprising linear and non-linear relations between variables. As an application of CMI estimation, we deploy our estimator for conditional independence (CI) testing on real data and obtain better results than state-of-the-art CI testers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源