论文标题

快速自我折叠的Kirigami的最佳面孔数量

Optimal Number of Faces for Fast Self-Folding Kirigami

论文作者

Melo, H. P. M., Dias, C. S., Araujo, N. A. M.

论文摘要

我们研究了由热波动驱动的3D金字塔的2D模板的自发折叠。结合了数值模拟和分析计算,我们发现总折叠时间是面部数量的非单调功能,而五个面则最小。每个面的运动与布朗过程一致,并通过一系列不可逆的结合事件进行折叠,这些事件紧密地在面之间。第一个边缘的结束是由2D中的第一笔填充过程很好地描述的,其特征时间与面部数量衰减。相比之下,随后的边缘封闭都是1D的第一笔填充过程,因此最后一个时间的时间随面部数量而对数增长。这两个不同的事件集之间的相互作用解释了非单调行为。讨论了对更复杂结构的自我折叠的含义。

We study the spontaneous folding of a 2D template of microscopic panels into a 3D pyramid, driven by thermal fluctuations. Combining numerical simulations and analytical calculations, we find that the total folding time is a non-monotonic function of the number of faces, with a minimum for five faces. The motion of each face is consistent with a Brownian process and folding occurs through a sequence of irreversible binding events that close edges between pairs of faces. The first edge closing is well-described by a first-passage process in 2D, with a characteristic time that decays with the number of faces. By contrast, the subsequent edge closings are all first-passage processes in 1D and so the time of the last one grows logarithmically with the number of faces. It is the interplay between these two different sets of events that explains the non-monotonic behavior. Implications in the self-folding of more complex structures are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源