论文标题

任意维度的时空中的通用常数和自然系统

Universal constants and natural systems of units in a spacetime of arbitrary dimension

论文作者

Sheykin, A. A., Manida, S. N.

论文摘要

我们使用J.-M。提出的维数常数的三重分类研究基本物理常数的性质。 l {é} vy-Leblond:对象(群众等)的常数,现象(耦合常数)的常数和“通用常数”(例如$ c $和$ \ hbar $)。我们表明,所有已知的“自然”单元系统至少包含一个非全日常数。我们讨论了这种非大学性的可能后果,例如,其中一些系统对空间维度的数量的依赖性。在搜索“完全通用”单元系统时,我们提出了一组由$ c $,$ \ hbar $和长度参数组成的常数,并讨论了其起源以及与L {é} Vy-Leblond和Bacry发现的可能的运动组的连接。最后,我们对这些常数的解释发表了一些评论。

We study the properties of fundamental physical constants using the threefold classification of dimensional constants proposed by J.-M. L{é}vy-Leblond: constants of objects (masses, etc.), constants of phenomena (coupling constants), and "universal constants" (such as $c$ and $\hbar$). We show that all of the known "natural" systems of units contain at least one non-universal constant. We discuss the possible consequences of such non-universality, e.g., the dependence of some of these systems on the number of spatial dimensions. In the search for a "fully universal" system of units, we propose a set of constants that consists of $c$, $\hbar$, and a length parameter and discuss its origins and the connection to the possible kinematic groups discovered by L{é}vy-Leblond and Bacry. Finally, we give some comments about the interpretation of these constants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源