论文标题

特征向量分离的通用性和多路复用网络中SIS相变的性质

Universality of eigenvector delocalization and the nature of the SIS phase transition in multiplex networks

论文作者

de Arruda, Guilherme Ferraz, Méndez-Bermúdez, J. A., Rodrigues, Francisco A., Moreno, Yamir

论文摘要

多路复用网络的通用光谱特性使我们能够评估SIS流行扩散模型中无疾病和流行阶段之间过渡的性质。在多重网络中,取决于耦合参数,$ p $,邻接矩阵的领先特征向量的反参与率($ ipr $)可以分为两个不同的结构制度:(i)层定位和(ii)定位。在这里,我们在这两个制度之间正式化结构过渡点$ p^*$,表明层尺寸$ n $和图层配置都有通用属性。也就是说,我们表明$ ipr \ sim n^{ - δ} $,$δ\大约1 $,并揭示了$ p^*$与层平均度之间的差异之间的近似线性关系。此外,我们表明,这种多重结构过渡与SIS相变的性质本质上有关,从而使我们能够理解和量化现象。由于这些结果与领先特征向量的通用性质有关,因此我们希望我们的发现可能与复杂网络中的其他动态过程有关。

Universal spectral properties of multiplex networks allow us to assess the nature of the transition between disease-free and endemic phases in the SIS epidemic spreading model. In a multiplex network, depending on a coupling parameter, $p$, the inverse participation ratio ($IPR$) of the leading eigenvector of the adjacency matrix can be in two different structural regimes: (i) layer-localized and (ii) delocalized. Here we formalize the structural transition point, $p^*$, between these two regimes, showing that there are universal properties regarding both the layer size $n$ and the layer configurations. Namely, we show that $IPR \sim n^{-δ}$, with $δ\approx 1$, and revealed an approximately linear relationship between $p^*$ and the difference between the layers' average degrees. Furthermore, we showed that this multiplex structural transition is intrinsically connected with the nature of the SIS phase transition, allowing us to both understand and quantify the phenomenon. As these results are related to the universal properties of the leading eigenvector, we expect that our findings might be relevant to other dynamical processes in complex networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源