论文标题
CMS高粒度量热计的中子辐照硅垫检测器的电荷收集和电特性
Charge Collection and Electrical Characterization of Neutron Irradiated Silicon Pad Detectors for the CMS High Granularity Calorimeter
论文作者
论文摘要
在计划于2027年的高光度LHC(HL-LHC)中,现有的端盖量热仪在紧凑型MUON螺线管(CMS)检测器中的替换将是高粒度热量表。它将在HL-LHC的巨大堆积中提供有关电磁和强化阵雨的详细位置,能量和定时信息。高粒度量热仪(HGCAL)将使用120-,200-和300- $μ\ textrm {m} $厚硅(SI)垫传感器作为主要的活动材料,并将维持1-Mev Neutron等效流量至大约$ 10^{16}〜\ textrm {n} _ \ textrm {eq} \ textrm {cm}^{ - 2} $。为了解决由强烈的辐射环境引起的SI检测器的性能降解,在两个反应器中进行了来自8英寸和6英寸晶片的测试二极管样品的辐射运动。辐照后电和电荷收集特性的表征涉及三个传感器厚度的两个大量极性。由于SI传感器将在-30 $^\ Circ $ C下运行,以减少散装电流的增加,因此对30个辐照样品的收费收集调查使用-30 $^\ circs $ c进行。较低平车处的TCAD模拟结果与实验结果密切一致,并为实验研究未涵盖的下通量区域的传感器性能提供了预测。所有调查的传感器在800 V处操作时在其各自的最高终身液体中显示60 $ \%$或更高的收费效率,并在最低的频率下以90 $ \%$显示在600 v的90 $ \%$。在800 V以上的电压下超过1 fc。
The replacement of the existing endcap calorimeter in the Compact Muon Solenoid (CMS) detector for the high-luminosity LHC (HL-LHC), scheduled for 2027, will be a high granularity calorimeter. It will provide detailed position, energy, and timing information on electromagnetic and hadronic showers in the immense pileup of the HL-LHC. The High Granularity Calorimeter (HGCAL) will use 120-, 200-, and 300-$μ\textrm{m}$ thick silicon (Si) pad sensors as the main active material and will sustain 1-MeV neutron equivalent fluences up to about $10^{16}~\textrm{n}_\textrm{eq}\textrm{cm}^{-2}$. In order to address the performance degradation of the Si detectors caused by the intense radiation environment, irradiation campaigns of test diode samples from 8-inch and 6-inch wafers were performed in two reactors. Characterization of the electrical and charge collection properties after irradiation involved both bulk polarities for the three sensor thicknesses. Since the Si sensors will be operated at -30 $^\circ$C to reduce increasing bulk leakage current with fluence, the charge collection investigation of 30 irradiated samples was carried out with the infrared-TCT setup at -30 $^\circ$C. TCAD simulation results at the lower fluences are in close agreement with the experimental results and provide predictions of sensor performance for the lower fluence regions not covered by the experimental study. All investigated sensors display 60$\%$ or higher charge collection efficiency at their respective highest lifetime fluences when operated at 800 V, and display above 90$\%$ at the lowest fluence, at 600 V. The collected charge close to the fluence of $10^{16}~\textrm{n}_\textrm{eq}\textrm{cm}^{-2}$ exceeds 1 fC at voltages beyond 800 V.