论文标题
改进的X空间算法用于Min-Max Bilevel Integer编程,并应用于社交网络中传播的误解
Improved x-space Algorithm for Min-Max Bilevel Integer Programming with an Application to Misinformation Spread in Social Networks
论文作者
论文摘要
在这项工作中,我们建议改进用于解决一类最小双重双层优化问题开发的$ x $ - 空间算法(Tang Y.,Richard J.P.P.,Smith J.C.(2016),一类用于混合混合bilevel Bilevel Min-Max优化的算法。在这种情况下,高层问题的领导者旨在通过最大程度地减少目标功能来限制追随者的决定,而该目标功能则通过使她的决策仍然可以为她提供决定,以最大程度地在下层问题中最大化。 $ x $ - 空间算法连续解决上限和下限问题,直到收敛为止,并且需要对追随者问题的近似值进行双重化,以制定下边界问题。我们首先使用对原始配方的最佳解决方案的属性重新重新重新制定了下限问题,这使双重化步骤不必要。重新制定使贪婪的启发式启发式化的结合到解决方案方案中,从而导致效率大大提高。被称为改进的$ x $ - 空间算法的新算法被实施并应用于最近的最小二聚体优化问题,该问题在减少社交网络中的错误信息传播的情况下会出现。还根据其他两个双重问题的基准实例进行了评估:零扣的问题与拦截和最大的集团问题有关。数值结果表明,新算法的性能优于原始算法的性能,并且与最新的算法相比,也可以对混合组合型双线性线性程序开发的算法进行比较。
In this work we propose an improvement of the $x$-space algorithm developed for solving a class of min--max bilevel optimization problems (Tang Y., Richard J.P.P., Smith J.C. (2016), A class of algorithms for mixed-integer bilevel min--max optimization. Journal of Global Optimization, 66(2), 225--262). In this setting, the leader of the upper level problem aims at restricting the follower's decisions by minimizing an objective function, which the follower intends to maximize in the lower level problem by making decisions still available to her. The $x$-space algorithm solves upper and lower bound problems consecutively until convergence, and requires the dualization of an approximation of the follower's problem in formulating the lower bound problem. We first reformulate the lower bound problem using the properties of an optimal solution to the original formulation, which makes the dualization step unnecessary. The reformulation makes possible the integration of a greedy covering heuristic into the solution scheme, which results in a considerable increase in the efficiency. The new algorithm referred to as the improved $x$-space algorithm is implemented and applied to a recent min--max bilevel optimization problem that arises in the context of reducing the misinformation spread in social networks. It is also assessed on the benchmark instances of two other bilevel problems: zero-one knapsack problem with interdiction and maximum clique problem with interdiction. Numerical results indicate that the performance of the new algorithm is superior to that of the original algorithm, and also compares favorably with a recent algorithm developed for mixed-integer bilevel linear programs.