论文标题

WeierStrass的变异理论用于分析色带生长过程中的半月板稳定性

Weierstrass' variational theory for analysing meniscus stability in ribbon growth processes

论文作者

Noronha, Eyan P., Oliveros, German A., Ydstie, Erik B.

论文摘要

我们使用基于热力学的第一定律来使用自由能最小化的方法来推导晶体色带生长系统的静态半月板形状。为了说明多相曲线作为最小化问题的解决方案的可能性,我们选择了半月板几何形状的参数表示。使用WeierStrass的Euler-Lagrange方程形式,我们得出了分析解决方案,这些解决方案可提供有关弯月面形状行为的明确知识。还分析了Young的接触角和Gibbs固定条件,并被证明是可变终点的能量最小化问题的结果。对于给定的色带生长构型,我们发现可以存在满足边界条件的多个静态弯月板。这些溶液的稳定性是使用二阶变化分析的,并发现表现出鞍节节点分叉。我们表明,弧长是半月板几何形状的自然表示,并提供了完整的溶液空间,而无法通过经典的变化公式访问。我们提供了一系列用于水力稳定的弯月板的操作条件,并使用简单的概念证明实验说明了从稳定到溢出配置的过渡。

We use the method of free energy minimization based on the first law of thermodynamics to derive static meniscus shapes for crystal ribbon growth systems. To account for the possibility of multivalued curves as solutions to the minimization problem, we choose a parametric representation of the meniscus geometry. Using Weierstrass' form of the Euler-Lagrange equation we derive analytical solutions that provide explicit knowledge on the behaviour of the meniscus shapes. Young's contact angle and Gibbs pinning conditions are also analyzed and are shown to be a consequence of the energy minimization problem with variable end-points. For a given ribbon growth configuration, we find that there can exist multiple static menisci that satisfy the boundary conditions. The stability of these solutions is analyzed using second order variations and are found to exhibit saddle node bifurcations. We show that the arc length is a natural representation of a meniscus geometry and provides the complete solution space, not accessible through the classical variational formulation. We provide a range of operating conditions for hydro-statically feasible menisci and illustrate the transition from a stable to spill-over configuration using a simple proof of concept experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源