论文标题

在圈子上聚集,匿名机器人可见度有限

Gathering on a Circle with Limited Visibility by Anonymous Oblivious Robots

论文作者

Di Luna, Giuseppe A., Uehara, Ryuhei, Viglietta, Giovanni, Yamauchi, Yukiko

论文摘要

在确定性的外观循环中运行的一群匿名遗忘的移动机器人被限制在圆形轨道中。所有机器人都同意顺时针方向(手性),它们都被对抗性半同步调度程序(Ssynch)激活,并且活动机器人始终达到其计算的目标点(刚度)。机器人的可见度有限:每个机器人只能看到与机器人当前位置的圆形距离严格小于常数$ \ vartheta $的圆上的点,其中$ 0 <\ vartheta \leqπ$(角度以弧度表示)。 我们研究了这样一群机器人的收集问题:也就是说,所有机器人最初都位于圆圈的不同位置,而它们的任务是在有限的转弯数中到达圆圈上的相同点,而不管调度程序如何激活它们。请注意,由于机器人的匿名性,如果初始配置在旋转对称性上,则无法使用此任务;因此,我们必须假设初始配置是旋转不对称的。 我们证明,如果$ \ vartheta =π$(即,每个机器人都可以看到整个圆圈,除了其对抗点),则有一个分布式算法可以解决任何大小的群体的收集问题。相比之下,我们还证明,如果$ \ vartheta \ leqπ/2 $,即使在假设初始配置是旋转不对称的,并且机器人的可见性图是连接的,否则无分布式算法解决了收集问题,无论群体的大小如何。 后者的不可能结果依赖于基于随机扰动的概率技术,该技术在匿名移动机器人的背景下是新颖的。这种技术具有独立的兴趣,并立即适用于其他模式形成问题。

A swarm of anonymous oblivious mobile robots, operating in deterministic Look-Compute-Move cycles, is confined within a circular track. All robots agree on the clockwise direction (chirality), they are activated by an adversarial semi-synchronous scheduler (SSYNCH), and an active robot always reaches the destination point it computes (rigidity). Robots have limited visibility: each robot can see only the points on the circle that have an angular distance strictly smaller than a constant $\vartheta$ from the robot's current location, where $0<\vartheta\leqπ$ (angles are expressed in radians). We study the Gathering problem for such a swarm of robots: that is, all robots are initially in distinct locations on the circle, and their task is to reach the same point on the circle in a finite number of turns, regardless of the way they are activated by the scheduler. Note that, due to the anonymity of the robots, this task is impossible if the initial configuration is rotationally symmetric; hence, we have to make the assumption that the initial configuration be rotationally asymmetric. We prove that, if $\vartheta=π$ (i.e., each robot can see the entire circle except its antipodal point), there is a distributed algorithm that solves the Gathering problem for swarms of any size. By contrast, we also prove that, if $\vartheta\leq π/2$, no distributed algorithm solves the Gathering problem, regardless of the size of the swarm, even under the assumption that the initial configuration is rotationally asymmetric and the visibility graph of the robots is connected. The latter impossibility result relies on a probabilistic technique based on random perturbations, which is novel in the context of anonymous mobile robots. Such a technique is of independent interest, and immediately applies to other Pattern-Formation problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源