论文标题

将语义和结构信息与图形卷积网络相结合以进行争议检测

Integrating Semantic and Structural Information with Graph Convolutional Network for Controversy Detection

论文作者

Zhong, Lei, Cao, Juan, Sheng, Qiang, Guo, Junbo, Wang, Ziang

论文摘要

在社交媒体上确定有争议的帖子是开采公众情绪,评估事件影响并减轻两极分化观点的基本任务。但是,现有方法无法进行1)有效地合并了与内容相关的帖子中的语义信息; 2)保留回复关系建模的结构信息; 3)适当处理与培训集中的主题的帖子。为了克服前两个局限性,我们提出了主题 - 局部宣传图卷积网络(TPC-GCN),该网络集成了图形结构和内容,帖子和评论的信息,以进行后级别的争议检测。至于第三个限制,我们将模型扩展到删除的TPC-GCN(DTPC-GCN),以解开与主题相关的和主题无关的功能,然后动态融合。在两个现实世界数据集上进行的广泛实验表明,我们的模型表现优于现有方法。对结果和案例的分析证明,我们的模型可以将语义和结构信息集成在一起,并具有明显的概括性。

Identifying controversial posts on social media is a fundamental task for mining public sentiment, assessing the influence of events, and alleviating the polarized views. However, existing methods fail to 1) effectively incorporate the semantic information from content-related posts; 2) preserve the structural information for reply relationship modeling; 3) properly handle posts from topics dissimilar to those in the training set. To overcome the first two limitations, we propose Topic-Post-Comment Graph Convolutional Network (TPC-GCN), which integrates the information from the graph structure and content of topics, posts, and comments for post-level controversy detection. As to the third limitation, we extend our model to Disentangled TPC-GCN (DTPC-GCN), to disentangle topic-related and topic-unrelated features and then fuse dynamically. Extensive experiments on two real-world datasets demonstrate that our models outperform existing methods. Analysis of the results and cases proves that our models can integrate both semantic and structural information with significant generalizability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源